libnetwork/networkdb: test quality of mRandomNodes

TestNetworkDBAlwaysConverges will occasionally find a failure where one
entry is missing on one node even after waiting a full five minutes. One
possible explanation is that the selection of nodes to gossip with is
biased in some way. Test that the mRandomNodes function picks a
uniformly distributed sample of node IDs of sufficient length.

The new test reveals that mRandomNodes may sometimes pick out a sample
of fewer than m nodes even when the number of nodes to pick from
(excluding the local node) is >= m. Put the test behind an xfail tag so
it is opt-in to run, without interfering with CI or bisecting.

Signed-off-by: Cory Snider <csnider@mirantis.com>
This commit is contained in:
Cory Snider
2025-06-24 17:01:30 -04:00
parent d8730dc1d3
commit 5799deb853
40 changed files with 4384 additions and 0 deletions

View File

@@ -0,0 +1,155 @@
//go:build xfail
package networkdb
import (
"maps"
"math"
"math/bits"
"slices"
"strings"
"testing"
"github.com/montanaflynn/stats"
"gotest.tools/v3/assert"
is "gotest.tools/v3/assert/cmp"
"pgregory.net/rapid"
)
func TestMRandomNodes(t *testing.T) {
cfg := DefaultConfig()
// The easiest way to ensure that we don't accidentally generate node
// IDs that match the local one is to include runes that the generator
// will never emit.
cfg.NodeID = "_thisnode"
uut := newNetworkDB(cfg)
t.Run("EmptySlice", func(t *testing.T) {
sample := uut.mRandomNodes(3, nil)
assert.Check(t, is.Len(sample, 0))
})
t.Run("OnlyLocalNode", func(t *testing.T) {
sample := uut.mRandomNodes(3, []string{cfg.NodeID})
assert.Check(t, is.Len(sample, 0))
})
gen := rapid.Custom(func(t *rapid.T) []string {
s := rapid.SliceOfNDistinct(rapid.StringMatching(`[a-z]{10}`), 0, 100, rapid.ID).Draw(t, "node-names")
insertPoint := rapid.IntRange(0, len(s)).Draw(t, "insertPoint")
return slices.Insert(s, insertPoint, cfg.NodeID)
})
rapid.Check(t, func(t *rapid.T) {
nodes := gen.Draw(t, "nodes")
m := rapid.IntRange(0, len(nodes)).Draw(t, "m")
takeSample := func() []string {
sample := uut.mRandomNodes(m, nodes)
assert.Check(t, is.Len(sample, min(m, len(nodes)-1)))
assert.Check(t, is.Equal(slices.Index(sample, cfg.NodeID), -1), "sample contains local node ID\n%v", sample)
assertUniqueElements(t, sample)
return sample
}
p := kpermutations(uint64(len(nodes)-1), uint64(m))
switch {
case p <= 1:
// Only one permutation is possible, so cannot test randomness.
// Assert the other properties by taking a few samples.
for range 100 {
_ = takeSample()
}
return
case p <= 10:
// With a small number of possible k-permutations, we
// can feasibly test how many samples it takes to get
// all of them.
seen := make(map[string]bool)
var i int
for i = range 10000 {
sample := takeSample()
seen[strings.Join(sample, ",")] = true
if len(seen) == int(p) {
break
}
}
assert.Check(t, is.Len(seen, int(p)), "did not see all %d permutations after %d trials", p, i+1)
t.Logf("saw all %d permutations after %d samples", p, i+1)
default:
uniques := 0
sample1 := takeSample()
for range 10 {
sample2 := takeSample()
if !slices.Equal(sample1, sample2) {
uniques++
}
}
assert.Check(t, uniques > 0, "mRandomNodes returned the same sample multiple times")
}
// We are testing randomness so statistical outliers are
// occasionally expected even when the probability
// distribution is uniform. Run multiple trials to make
// test flakes unlikely in practice.
extremes := 0
for range 10 {
counts := make(map[string]int)
for _, n := range nodes {
if n != cfg.NodeID {
counts[n] = 0
}
}
const samples = 10000
for range samples {
for _, n := range uut.mRandomNodes(m, nodes) {
counts[n]++
}
}
// Adding multiple samples together should yield a normal distribution
// if the samples are unbiased.
countsf := stats.LoadRawData(slices.Collect(maps.Values(counts)))
nf := stats.NormFit(countsf)
mean, stdev := nf[0], nf[1]
minv, _ := countsf.Min()
maxv, _ := countsf.Max()
if minv < mean-4*stdev || maxv > mean+4*stdev {
extremes++
t.Logf("Mean: %f, StdDev: %f, Min: %f, Max: %f", mean, stdev, minv, maxv)
}
}
assert.Check(t, extremes <= 2, "outliers in distribution: %d/10 trials, expected <2/10", extremes)
})
}
func assertUniqueElements[S ~[]E, E comparable](t rapid.TB, s S) {
t.Helper()
counts := make(map[E]int)
for _, e := range s {
counts[e]++
}
for e, c := range counts {
assert.Equal(t, c, 1, "element %v appears more than once in the slice", e)
}
}
// kpermutations returns P(n,k), the number of permutations of k elements chosen
// from a set of size n. The calculation is saturating: if the result is larger than
// can be represented by a uint64, math.MaxUint64 is returned.
func kpermutations(n, k uint64) uint64 {
if k > n {
return 0
}
if k == 0 || n == 0 {
return 1
}
p := uint64(1)
for i := range k {
var hi uint64
hi, p = bits.Mul64(p, n-i)
if hi != 0 {
return math.MaxUint64
}
}
return p
}

View File

@@ -80,6 +80,7 @@ require (
github.com/moby/sys/user v0.4.0
github.com/moby/sys/userns v0.1.0
github.com/moby/term v0.5.2
github.com/montanaflynn/stats v0.7.1
github.com/morikuni/aec v1.0.0
github.com/opencontainers/cgroups v0.0.4
github.com/opencontainers/go-digest v1.0.0

View File

@@ -423,6 +423,8 @@ github.com/modern-go/concurrent v0.0.0-20180228061459-e0a39a4cb421/go.mod h1:6dJ
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/reflect2 v0.0.0-20180701023420-4b7aa43c6742/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/modern-go/reflect2 v1.0.1/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/montanaflynn/stats v0.7.1 h1:etflOAAHORrCC44V+aR6Ftzort912ZU+YLiSTuV8eaE=
github.com/montanaflynn/stats v0.7.1/go.mod h1:etXPPgVO6n31NxCd9KQUMvCM+ve0ruNzt6R8Bnaayow=
github.com/morikuni/aec v1.0.0 h1:nP9CBfwrvYnBRgY6qfDQkygYDmYwOilePFkwzv4dU8A=
github.com/morikuni/aec v1.0.0/go.mod h1:BbKIizmSmc5MMPqRYbxO4ZU0S0+P200+tUnFx7PXmsc=
github.com/mreiferson/go-httpclient v0.0.0-20160630210159-31f0106b4474/go.mod h1:OQA4XLvDbMgS8P0CevmM4m9Q3Jq4phKUzcocxuGJ5m8=

7
vendor/github.com/montanaflynn/stats/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,7 @@
coverage.out
coverage.txt
release-notes.txt
.directory
.chglog
.vscode
.DS_Store

534
vendor/github.com/montanaflynn/stats/CHANGELOG.md generated vendored Normal file
View File

@@ -0,0 +1,534 @@
<a name="unreleased"></a>
## [Unreleased]
<a name="v0.7.1"></a>
## [v0.7.1] - 2023-05-11
### Add
- Add describe functions ([#77](https://github.com/montanaflynn/stats/issues/77))
### Update
- Update .gitignore
- Update README.md, LICENSE and DOCUMENTATION.md files
- Update github action go workflow to run on push
<a name="v0.7.0"></a>
## [v0.7.0] - 2023-01-08
### Add
- Add geometric distribution functions ([#75](https://github.com/montanaflynn/stats/issues/75))
- Add GitHub action go workflow
### Remove
- Remove travis CI config
### Update
- Update changelog with v0.7.0 changes
- Update changelog with v0.7.0 changes
- Update github action go workflow
- Update geometric distribution tests
<a name="v0.6.6"></a>
## [v0.6.6] - 2021-04-26
### Add
- Add support for string and io.Reader in LoadRawData (pr [#68](https://github.com/montanaflynn/stats/issues/68))
- Add latest versions of Go to test against
### Update
- Update changelog with v0.6.6 changes
### Use
- Use math.Sqrt in StandardDeviation (PR [#64](https://github.com/montanaflynn/stats/issues/64))
<a name="v0.6.5"></a>
## [v0.6.5] - 2021-02-21
### Add
- Add Float64Data.Quartiles documentation
- Add Quartiles method to Float64Data type (issue [#60](https://github.com/montanaflynn/stats/issues/60))
### Fix
- Fix make release changelog command and add changelog history
### Update
- Update changelog with v0.6.5 changes
- Update changelog with v0.6.4 changes
- Update README.md links to CHANGELOG.md and DOCUMENTATION.md
- Update README.md and Makefile with new release commands
<a name="v0.6.4"></a>
## [v0.6.4] - 2021-01-13
### Fix
- Fix failing tests due to precision errors on arm64 ([#58](https://github.com/montanaflynn/stats/issues/58))
### Update
- Update changelog with v0.6.4 changes
- Update examples directory to include a README.md used for synopsis
- Update go.mod to include go version where modules are enabled by default
- Update changelog with v0.6.3 changes
<a name="v0.6.3"></a>
## [v0.6.3] - 2020-02-18
### Add
- Add creating and committing changelog to Makefile release directive
- Add release-notes.txt and .chglog directory to .gitignore
### Update
- Update exported tests to use import for better example documentation
- Update documentation using godoc2md
- Update changelog with v0.6.2 release
<a name="v0.6.2"></a>
## [v0.6.2] - 2020-02-18
### Fix
- Fix linting errcheck warnings in go benchmarks
### Update
- Update Makefile release directive to use correct release name
<a name="v0.6.1"></a>
## [v0.6.1] - 2020-02-18
### Add
- Add StableSample function signature to readme
### Fix
- Fix linting warnings for normal distribution functions formatting and tests
### Update
- Update documentation links and rename DOC.md to DOCUMENTATION.md
- Update README with link to pkg.go.dev reference and release section
- Update Makefile with new changelog, docs, and release directives
- Update DOC.md links to GitHub source code
- Update doc.go comment and add DOC.md package reference file
- Update changelog using git-chglog
<a name="v0.6.0"></a>
## [v0.6.0] - 2020-02-17
### Add
- Add Normal Distribution Functions ([#56](https://github.com/montanaflynn/stats/issues/56))
- Add previous versions of Go to travis CI config
- Add check for distinct values in Mode function ([#51](https://github.com/montanaflynn/stats/issues/51))
- Add StableSample function ([#48](https://github.com/montanaflynn/stats/issues/48))
- Add doc.go file to show description and usage on godoc.org
- Add comments to new error and legacy error variables
- Add ExampleRound function to tests
- Add go.mod file for module support
- Add Sigmoid, SoftMax and Entropy methods and tests
- Add Entropy documentation, example and benchmarks
- Add Entropy function ([#44](https://github.com/montanaflynn/stats/issues/44))
### Fix
- Fix percentile when only one element ([#47](https://github.com/montanaflynn/stats/issues/47))
- Fix AutoCorrelation name in comments and remove unneeded Sprintf
### Improve
- Improve documentation section with command comments
### Remove
- Remove very old versions of Go in travis CI config
- Remove boolean comparison to get rid of gometalinter warning
### Update
- Update license dates
- Update Distance functions signatures to use Float64Data
- Update Sigmoid examples
- Update error names with backward compatibility
### Use
- Use relative link to examples/main.go
- Use a single var block for exported errors
<a name="v0.5.0"></a>
## [v0.5.0] - 2019-01-16
### Add
- Add Sigmoid and Softmax functions
### Fix
- Fix syntax highlighting and add CumulativeSum func
<a name="v0.4.0"></a>
## [v0.4.0] - 2019-01-14
### Add
- Add goreport badge and documentation section to README.md
- Add Examples to test files
- Add AutoCorrelation and nist tests
- Add String method to statsErr type
- Add Y coordinate error for ExponentialRegression
- Add syntax highlighting ([#43](https://github.com/montanaflynn/stats/issues/43))
- Add CumulativeSum ([#40](https://github.com/montanaflynn/stats/issues/40))
- Add more tests and rename distance files
- Add coverage and benchmarks to azure pipeline
- Add go tests to azure pipeline
### Change
- Change travis tip alias to master
- Change codecov to coveralls for code coverage
### Fix
- Fix a few lint warnings
- Fix example error
### Improve
- Improve test coverage of distance functions
### Only
- Only run travis on stable and tip versions
- Only check code coverage on tip
### Remove
- Remove azure CI pipeline
- Remove unnecessary type conversions
### Return
- Return EmptyInputErr instead of EmptyInput
### Set
- Set up CI with Azure Pipelines
<a name="0.3.0"></a>
## [0.3.0] - 2017-12-02
### Add
- Add Chebyshev, Manhattan, Euclidean and Minkowski distance functions ([#35](https://github.com/montanaflynn/stats/issues/35))
- Add function for computing chebyshev distance. ([#34](https://github.com/montanaflynn/stats/issues/34))
- Add support for time.Duration
- Add LoadRawData to docs and examples
- Add unit test for edge case that wasn't covered
- Add unit tests for edge cases that weren't covered
- Add pearson alias delegating to correlation
- Add CovariancePopulation to Float64Data
- Add pearson product-moment correlation coefficient
- Add population covariance
- Add random slice benchmarks
- Add all applicable functions as methods to Float64Data type
- Add MIT license badge
- Add link to examples/methods.go
- Add Protips for usage and documentation sections
- Add tests for rounding up
- Add webdoc target and remove linting from test target
- Add example usage and consolidate contributing information
### Added
- Added MedianAbsoluteDeviation
### Annotation
- Annotation spelling error
### Auto
- auto commit
- auto commit
### Calculate
- Calculate correlation with sdev and covp
### Clean
- Clean up README.md and add info for offline docs
### Consolidated
- Consolidated all error values.
### Fix
- Fix Percentile logic
- Fix InterQuartileRange method test
- Fix zero percent bug and add test
- Fix usage example output typos
### Improve
- Improve bounds checking in Percentile
- Improve error log messaging
### Imput
- Imput -> Input
### Include
- Include alternative way to set Float64Data in example
### Make
- Make various changes to README.md
### Merge
- Merge branch 'master' of github.com:montanaflynn/stats
- Merge master
### Mode
- Mode calculation fix and tests
### Realized
- Realized the obvious efficiency gains of ignoring the unique numbers at the beginning of the slice. Benchmark joy ensued.
### Refactor
- Refactor testing of Round()
- Refactor setting Coordinate y field using Exp in place of Pow
- Refactor Makefile and add docs target
### Remove
- Remove deep links to types and functions
### Rename
- Rename file from types to data
### Retrieve
- Retrieve InterQuartileRange for the Float64Data.
### Split
- Split up stats.go into separate files
### Support
- Support more types on LoadRawData() ([#36](https://github.com/montanaflynn/stats/issues/36))
### Switch
- Switch default and check targets
### Update
- Update Readme
- Update example methods and some text
- Update README and include Float64Data type method examples
### Pull Requests
- Merge pull request [#32](https://github.com/montanaflynn/stats/issues/32) from a-robinson/percentile
- Merge pull request [#30](https://github.com/montanaflynn/stats/issues/30) from montanaflynn/fix-test
- Merge pull request [#29](https://github.com/montanaflynn/stats/issues/29) from edupsousa/master
- Merge pull request [#27](https://github.com/montanaflynn/stats/issues/27) from andrey-yantsen/fix-percentile-out-of-bounds
- Merge pull request [#25](https://github.com/montanaflynn/stats/issues/25) from kazhuravlev/patch-1
- Merge pull request [#22](https://github.com/montanaflynn/stats/issues/22) from JanBerktold/time-duration
- Merge pull request [#24](https://github.com/montanaflynn/stats/issues/24) from alouche/master
- Merge pull request [#21](https://github.com/montanaflynn/stats/issues/21) from brydavis/master
- Merge pull request [#19](https://github.com/montanaflynn/stats/issues/19) from ginodeis/mode-bug
- Merge pull request [#17](https://github.com/montanaflynn/stats/issues/17) from Kunde21/master
- Merge pull request [#3](https://github.com/montanaflynn/stats/issues/3) from montanaflynn/master
- Merge pull request [#2](https://github.com/montanaflynn/stats/issues/2) from montanaflynn/master
- Merge pull request [#13](https://github.com/montanaflynn/stats/issues/13) from toashd/pearson
- Merge pull request [#12](https://github.com/montanaflynn/stats/issues/12) from alixaxel/MAD
- Merge pull request [#1](https://github.com/montanaflynn/stats/issues/1) from montanaflynn/master
- Merge pull request [#11](https://github.com/montanaflynn/stats/issues/11) from Kunde21/modeMemReduce
- Merge pull request [#10](https://github.com/montanaflynn/stats/issues/10) from Kunde21/ModeRewrite
<a name="0.2.0"></a>
## [0.2.0] - 2015-10-14
### Add
- Add Makefile with gometalinter, testing, benchmarking and coverage report targets
- Add comments describing functions and structs
- Add Correlation func
- Add Covariance func
- Add tests for new function shortcuts
- Add StandardDeviation function as a shortcut to StandardDeviationPopulation
- Add Float64Data and Series types
### Change
- Change Sample to return a standard []float64 type
### Fix
- Fix broken link to Makefile
- Fix broken link and simplify code coverage reporting command
- Fix go vet warning about printf type placeholder
- Fix failing codecov test coverage reporting
- Fix link to CHANGELOG.md
### Fixed
- Fixed typographical error, changed accomdate to accommodate in README.
### Include
- Include Variance and StandardDeviation shortcuts
### Pass
- Pass gometalinter
### Refactor
- Refactor Variance function to be the same as population variance
### Release
- Release version 0.2.0
### Remove
- Remove unneeded do packages and update cover URL
- Remove sudo from pip install
### Reorder
- Reorder functions and sections
### Revert
- Revert to legacy containers to preserve go1.1 testing
### Switch
- Switch from legacy to container-based CI infrastructure
### Update
- Update contributing instructions and mention Makefile
### Pull Requests
- Merge pull request [#5](https://github.com/montanaflynn/stats/issues/5) from orthographic-pedant/spell_check/accommodate
<a name="0.1.0"></a>
## [0.1.0] - 2015-08-19
### Add
- Add CONTRIBUTING.md
### Rename
- Rename functions while preserving backwards compatibility
<a name="0.0.9"></a>
## 0.0.9 - 2015-08-18
### Add
- Add HarmonicMean func
- Add GeometricMean func
- Add .gitignore to avoid commiting test coverage report
- Add Outliers stuct and QuantileOutliers func
- Add Interquartile Range, Midhinge and Trimean examples
- Add Trimean
- Add Midhinge
- Add Inter Quartile Range
- Add a unit test to check for an empty slice error
- Add Quantiles struct and Quantile func
- Add more tests and fix a typo
- Add Golang 1.5 to build tests
- Add a standard MIT license file
- Add basic benchmarking
- Add regression models
- Add codecov token
- Add codecov
- Add check for slices with a single item
- Add coverage tests
- Add back previous Go versions to Travis CI
- Add Travis CI
- Add GoDoc badge
- Add Percentile and Float64ToInt functions
- Add another rounding test for whole numbers
- Add build status badge
- Add code coverage badge
- Add test for NaN, achieving 100% code coverage
- Add round function
- Add standard deviation function
- Add sum function
### Add
- add tests for sample
- add sample
### Added
- Added sample and population variance and deviation functions
- Added README
### Adjust
- Adjust API ordering
### Avoid
- Avoid unintended consequence of using sort
### Better
- Better performing min/max
- Better description
### Change
- Change package path to potentially fix a bug in earlier versions of Go
### Clean
- Clean up README and add some more information
- Clean up test error
### Consistent
- Consistent empty slice error messages
- Consistent var naming
- Consistent func declaration
### Convert
- Convert ints to floats
### Duplicate
- Duplicate packages for all versions
### Export
- Export Coordinate struct fields
### First
- First commit
### Fix
- Fix copy pasta mistake testing the wrong function
- Fix error message
- Fix usage output and edit API doc section
- Fix testing edgecase where map was in wrong order
- Fix usage example
- Fix usage examples
### Include
- Include the Nearest Rank method of calculating percentiles
### More
- More commenting
### Move
- Move GoDoc link to top
### Redirect
- Redirect kills newer versions of Go
### Refactor
- Refactor code and error checking
### Remove
- Remove unnecassary typecasting in sum func
- Remove cover since it doesn't work for later versions of go
- Remove golint and gocoveralls
### Rename
- Rename StandardDev to StdDev
- Rename StandardDev to StdDev
### Return
- Return errors for all functions
### Run
- Run go fmt to clean up formatting
### Simplify
- Simplify min/max function
### Start
- Start with minimal tests
### Switch
- Switch wercker to travis and update todos
### Table
- table testing style
### Update
- Update README and move the example main.go into it's own file
- Update TODO list
- Update README
- Update usage examples and todos
### Use
- Use codecov the recommended way
- Use correct string formatting types
### Pull Requests
- Merge pull request [#4](https://github.com/montanaflynn/stats/issues/4) from saromanov/sample
[Unreleased]: https://github.com/montanaflynn/stats/compare/v0.7.1...HEAD
[v0.7.1]: https://github.com/montanaflynn/stats/compare/v0.7.0...v0.7.1
[v0.7.0]: https://github.com/montanaflynn/stats/compare/v0.6.6...v0.7.0
[v0.6.6]: https://github.com/montanaflynn/stats/compare/v0.6.5...v0.6.6
[v0.6.5]: https://github.com/montanaflynn/stats/compare/v0.6.4...v0.6.5
[v0.6.4]: https://github.com/montanaflynn/stats/compare/v0.6.3...v0.6.4
[v0.6.3]: https://github.com/montanaflynn/stats/compare/v0.6.2...v0.6.3
[v0.6.2]: https://github.com/montanaflynn/stats/compare/v0.6.1...v0.6.2
[v0.6.1]: https://github.com/montanaflynn/stats/compare/v0.6.0...v0.6.1
[v0.6.0]: https://github.com/montanaflynn/stats/compare/v0.5.0...v0.6.0
[v0.5.0]: https://github.com/montanaflynn/stats/compare/v0.4.0...v0.5.0
[v0.4.0]: https://github.com/montanaflynn/stats/compare/0.3.0...v0.4.0
[0.3.0]: https://github.com/montanaflynn/stats/compare/0.2.0...0.3.0
[0.2.0]: https://github.com/montanaflynn/stats/compare/0.1.0...0.2.0
[0.1.0]: https://github.com/montanaflynn/stats/compare/0.0.9...0.1.0

1271
vendor/github.com/montanaflynn/stats/DOCUMENTATION.md generated vendored Normal file

File diff suppressed because it is too large Load Diff

21
vendor/github.com/montanaflynn/stats/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2014-2023 Montana Flynn (https://montanaflynn.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

34
vendor/github.com/montanaflynn/stats/Makefile generated vendored Normal file
View File

@@ -0,0 +1,34 @@
.PHONY: all
default: test lint
format:
go fmt .
test:
go test -race
check: format test
benchmark:
go test -bench=. -benchmem
coverage:
go test -coverprofile=coverage.out
go tool cover -html="coverage.out"
lint: format
golangci-lint run .
docs:
godoc2md github.com/montanaflynn/stats | sed -e s#src/target/##g > DOCUMENTATION.md
release:
git-chglog --output CHANGELOG.md --next-tag ${TAG}
git add CHANGELOG.md
git commit -m "Update changelog with ${TAG} changes"
git tag ${TAG}
git-chglog $(TAG) | tail -n +4 | gsed '1s/^/$(TAG)\n/gm' > release-notes.txt
git push origin master ${TAG}
hub release create --copy -F release-notes.txt ${TAG}

237
vendor/github.com/montanaflynn/stats/README.md generated vendored Normal file
View File

@@ -0,0 +1,237 @@
# Stats - Golang Statistics Package
[![][action-svg]][action-url] [![][codecov-svg]][codecov-url] [![][goreport-svg]][goreport-url] [![][godoc-svg]][godoc-url] [![][pkggodev-svg]][pkggodev-url] [![][license-svg]][license-url]
A well tested and comprehensive Golang statistics library / package / module with no dependencies.
If you have any suggestions, problems or bug reports please [create an issue](https://github.com/montanaflynn/stats/issues) and I'll do my best to accommodate you. In addition simply starring the repo would show your support for the project and be very much appreciated!
## Installation
```
go get github.com/montanaflynn/stats
```
## Example Usage
All the functions can be seen in [examples/main.go](examples/main.go) but here's a little taste:
```go
// start with some source data to use
data := []float64{1.0, 2.1, 3.2, 4.823, 4.1, 5.8}
// you could also use different types like this
// data := stats.LoadRawData([]int{1, 2, 3, 4, 5})
// data := stats.LoadRawData([]interface{}{1.1, "2", 3})
// etc...
median, _ := stats.Median(data)
fmt.Println(median) // 3.65
roundedMedian, _ := stats.Round(median, 0)
fmt.Println(roundedMedian) // 4
```
## Documentation
The entire API documentation is available on [GoDoc.org](http://godoc.org/github.com/montanaflynn/stats) or [pkg.go.dev](https://pkg.go.dev/github.com/montanaflynn/stats).
You can also view docs offline with the following commands:
```
# Command line
godoc . # show all exported apis
godoc . Median # show a single function
godoc -ex . Round # show function with example
godoc . Float64Data # show the type and methods
# Local website
godoc -http=:4444 # start the godoc server on port 4444
open http://localhost:4444/pkg/github.com/montanaflynn/stats/
```
The exported API is as follows:
```go
var (
ErrEmptyInput = statsError{"Input must not be empty."}
ErrNaN = statsError{"Not a number."}
ErrNegative = statsError{"Must not contain negative values."}
ErrZero = statsError{"Must not contain zero values."}
ErrBounds = statsError{"Input is outside of range."}
ErrSize = statsError{"Must be the same length."}
ErrInfValue = statsError{"Value is infinite."}
ErrYCoord = statsError{"Y Value must be greater than zero."}
)
func Round(input float64, places int) (rounded float64, err error) {}
type Float64Data []float64
func LoadRawData(raw interface{}) (f Float64Data) {}
func AutoCorrelation(data Float64Data, lags int) (float64, error) {}
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func Correlation(data1, data2 Float64Data) (float64, error) {}
func Covariance(data1, data2 Float64Data) (float64, error) {}
func CovariancePopulation(data1, data2 Float64Data) (float64, error) {}
func CumulativeSum(input Float64Data) ([]float64, error) {}
func Describe(input Float64Data, allowNaN bool, percentiles *[]float64) (*Description, error) {}
func DescribePercentileFunc(input Float64Data, allowNaN bool, percentiles *[]float64, percentileFunc func(Float64Data, float64) (float64, error)) (*Description, error) {}
func Entropy(input Float64Data) (float64, error) {}
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func GeometricMean(input Float64Data) (float64, error) {}
func HarmonicMean(input Float64Data) (float64, error) {}
func InterQuartileRange(input Float64Data) (float64, error) {}
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {}
func Max(input Float64Data) (max float64, err error) {}
func Mean(input Float64Data) (float64, error) {}
func Median(input Float64Data) (median float64, err error) {}
func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error) {}
func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error) {}
func Midhinge(input Float64Data) (float64, error) {}
func Min(input Float64Data) (min float64, err error) {}
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error) {}
func Mode(input Float64Data) (mode []float64, err error) {}
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 {}
func NormCdf(x float64, loc float64, scale float64) float64 {}
func NormEntropy(loc float64, scale float64) float64 {}
func NormFit(data []float64) [2]float64{}
func NormInterval(alpha float64, loc float64, scale float64 ) [2]float64 {}
func NormIsf(p float64, loc float64, scale float64) (x float64) {}
func NormLogCdf(x float64, loc float64, scale float64) float64 {}
func NormLogPdf(x float64, loc float64, scale float64) float64 {}
func NormLogSf(x float64, loc float64, scale float64) float64 {}
func NormMean(loc float64, scale float64) float64 {}
func NormMedian(loc float64, scale float64) float64 {}
func NormMoment(n int, loc float64, scale float64) float64 {}
func NormPdf(x float64, loc float64, scale float64) float64 {}
func NormPpf(p float64, loc float64, scale float64) (x float64) {}
func NormPpfRvs(loc float64, scale float64, size int) []float64 {}
func NormSf(x float64, loc float64, scale float64) float64 {}
func NormStats(loc float64, scale float64, moments string) []float64 {}
func NormStd(loc float64, scale float64) float64 {}
func NormVar(loc float64, scale float64) float64 {}
func Pearson(data1, data2 Float64Data) (float64, error) {}
func Percentile(input Float64Data, percent float64) (percentile float64, err error) {}
func PercentileNearestRank(input Float64Data, percent float64) (percentile float64, err error) {}
func PopulationVariance(input Float64Data) (pvar float64, err error) {}
func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error) {}
func SampleVariance(input Float64Data) (svar float64, err error) {}
func Sigmoid(input Float64Data) ([]float64, error) {}
func SoftMax(input Float64Data) ([]float64, error) {}
func StableSample(input Float64Data, takenum int) ([]float64, error) {}
func StandardDeviation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationPopulation(input Float64Data) (sdev float64, err error) {}
func StandardDeviationSample(input Float64Data) (sdev float64, err error) {}
func StdDevP(input Float64Data) (sdev float64, err error) {}
func StdDevS(input Float64Data) (sdev float64, err error) {}
func Sum(input Float64Data) (sum float64, err error) {}
func Trimean(input Float64Data) (float64, error) {}
func VarP(input Float64Data) (sdev float64, err error) {}
func VarS(input Float64Data) (sdev float64, err error) {}
func Variance(input Float64Data) (sdev float64, err error) {}
func ProbGeom(a int, b int, p float64) (prob float64, err error) {}
func ExpGeom(p float64) (exp float64, err error) {}
func VarGeom(p float64) (exp float64, err error) {}
type Coordinate struct {
X, Y float64
}
type Series []Coordinate
func ExponentialRegression(s Series) (regressions Series, err error) {}
func LinearRegression(s Series) (regressions Series, err error) {}
func LogarithmicRegression(s Series) (regressions Series, err error) {}
type Outliers struct {
Mild Float64Data
Extreme Float64Data
}
type Quartiles struct {
Q1 float64
Q2 float64
Q3 float64
}
func Quartile(input Float64Data) (Quartiles, error) {}
func QuartileOutliers(input Float64Data) (Outliers, error) {}
```
## Contributing
Pull request are always welcome no matter how big or small. I've included a [Makefile](https://github.com/montanaflynn/stats/blob/master/Makefile) that has a lot of helper targets for common actions such as linting, testing, code coverage reporting and more.
1. Fork the repo and clone your fork
2. Create new branch (`git checkout -b some-thing`)
3. Make the desired changes
4. Ensure tests pass (`go test -cover` or `make test`)
5. Run lint and fix problems (`go vet .` or `make lint`)
6. Commit changes (`git commit -am 'Did something'`)
7. Push branch (`git push origin some-thing`)
8. Submit pull request
To make things as seamless as possible please also consider the following steps:
- Update `examples/main.go` with a simple example of the new feature
- Update `README.md` documentation section with any new exported API
- Keep 100% code coverage (you can check with `make coverage`)
- Squash commits into single units of work with `git rebase -i new-feature`
## Releasing
This is not required by contributors and mostly here as a reminder to myself as the maintainer of this repo. To release a new version we should update the [CHANGELOG.md](/CHANGELOG.md) and [DOCUMENTATION.md](/DOCUMENTATION.md).
First install the tools used to generate the markdown files and release:
```
go install github.com/davecheney/godoc2md@latest
go install github.com/golangci/golangci-lint/cmd/golangci-lint@latest
brew tap git-chglog/git-chglog
brew install gnu-sed hub git-chglog
```
Then you can run these `make` directives:
```
# Generate DOCUMENTATION.md
make docs
```
Then we can create a [CHANGELOG.md](/CHANGELOG.md) a new git tag and a github release:
```
make release TAG=v0.x.x
```
To authenticate `hub` for the release you will need to create a personal access token and use it as the password when it's requested.
## MIT License
Copyright (c) 2014-2023 Montana Flynn (https://montanaflynn.com)
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORpublicS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
[action-url]: https://github.com/montanaflynn/stats/actions
[action-svg]: https://img.shields.io/github/actions/workflow/status/montanaflynn/stats/go.yml
[codecov-url]: https://app.codecov.io/gh/montanaflynn/stats
[codecov-svg]: https://img.shields.io/codecov/c/github/montanaflynn/stats?token=wnw8dActnH
[goreport-url]: https://goreportcard.com/report/github.com/montanaflynn/stats
[goreport-svg]: https://goreportcard.com/badge/github.com/montanaflynn/stats
[godoc-url]: https://godoc.org/github.com/montanaflynn/stats
[godoc-svg]: https://godoc.org/github.com/montanaflynn/stats?status.svg
[pkggodev-url]: https://pkg.go.dev/github.com/montanaflynn/stats
[pkggodev-svg]: https://gistcdn.githack.com/montanaflynn/b02f1d78d8c0de8435895d7e7cd0d473/raw/17f2a5a69f1323ecd42c00e0683655da96d9ecc8/badge.svg
[license-url]: https://github.com/montanaflynn/stats/blob/master/LICENSE
[license-svg]: https://img.shields.io/badge/license-MIT-blue.svg

60
vendor/github.com/montanaflynn/stats/correlation.go generated vendored Normal file
View File

@@ -0,0 +1,60 @@
package stats
import (
"math"
)
// Correlation describes the degree of relationship between two sets of data
func Correlation(data1, data2 Float64Data) (float64, error) {
l1 := data1.Len()
l2 := data2.Len()
if l1 == 0 || l2 == 0 {
return math.NaN(), EmptyInputErr
}
if l1 != l2 {
return math.NaN(), SizeErr
}
sdev1, _ := StandardDeviationPopulation(data1)
sdev2, _ := StandardDeviationPopulation(data2)
if sdev1 == 0 || sdev2 == 0 {
return 0, nil
}
covp, _ := CovariancePopulation(data1, data2)
return covp / (sdev1 * sdev2), nil
}
// Pearson calculates the Pearson product-moment correlation coefficient between two variables
func Pearson(data1, data2 Float64Data) (float64, error) {
return Correlation(data1, data2)
}
// AutoCorrelation is the correlation of a signal with a delayed copy of itself as a function of delay
func AutoCorrelation(data Float64Data, lags int) (float64, error) {
if len(data) < 1 {
return 0, EmptyInputErr
}
mean, _ := Mean(data)
var result, q float64
for i := 0; i < lags; i++ {
v := (data[0] - mean) * (data[0] - mean)
for i := 1; i < len(data); i++ {
delta0 := data[i-1] - mean
delta1 := data[i] - mean
q += (delta0*delta1 - q) / float64(i+1)
v += (delta1*delta1 - v) / float64(i+1)
}
result = q / v
}
return result, nil
}

21
vendor/github.com/montanaflynn/stats/cumulative_sum.go generated vendored Normal file
View File

@@ -0,0 +1,21 @@
package stats
// CumulativeSum calculates the cumulative sum of the input slice
func CumulativeSum(input Float64Data) ([]float64, error) {
if input.Len() == 0 {
return Float64Data{}, EmptyInput
}
cumSum := make([]float64, input.Len())
for i, val := range input {
if i == 0 {
cumSum[i] = val
} else {
cumSum[i] = cumSum[i-1] + val
}
}
return cumSum, nil
}

169
vendor/github.com/montanaflynn/stats/data.go generated vendored Normal file
View File

@@ -0,0 +1,169 @@
package stats
// Float64Data is a named type for []float64 with helper methods
type Float64Data []float64
// Get item in slice
func (f Float64Data) Get(i int) float64 { return f[i] }
// Len returns length of slice
func (f Float64Data) Len() int { return len(f) }
// Less returns if one number is less than another
func (f Float64Data) Less(i, j int) bool { return f[i] < f[j] }
// Swap switches out two numbers in slice
func (f Float64Data) Swap(i, j int) { f[i], f[j] = f[j], f[i] }
// Min returns the minimum number in the data
func (f Float64Data) Min() (float64, error) { return Min(f) }
// Max returns the maximum number in the data
func (f Float64Data) Max() (float64, error) { return Max(f) }
// Sum returns the total of all the numbers in the data
func (f Float64Data) Sum() (float64, error) { return Sum(f) }
// CumulativeSum returns the cumulative sum of the data
func (f Float64Data) CumulativeSum() ([]float64, error) { return CumulativeSum(f) }
// Mean returns the mean of the data
func (f Float64Data) Mean() (float64, error) { return Mean(f) }
// Median returns the median of the data
func (f Float64Data) Median() (float64, error) { return Median(f) }
// Mode returns the mode of the data
func (f Float64Data) Mode() ([]float64, error) { return Mode(f) }
// GeometricMean returns the median of the data
func (f Float64Data) GeometricMean() (float64, error) { return GeometricMean(f) }
// HarmonicMean returns the mode of the data
func (f Float64Data) HarmonicMean() (float64, error) { return HarmonicMean(f) }
// MedianAbsoluteDeviation the median of the absolute deviations from the dataset median
func (f Float64Data) MedianAbsoluteDeviation() (float64, error) {
return MedianAbsoluteDeviation(f)
}
// MedianAbsoluteDeviationPopulation finds the median of the absolute deviations from the population median
func (f Float64Data) MedianAbsoluteDeviationPopulation() (float64, error) {
return MedianAbsoluteDeviationPopulation(f)
}
// StandardDeviation the amount of variation in the dataset
func (f Float64Data) StandardDeviation() (float64, error) {
return StandardDeviation(f)
}
// StandardDeviationPopulation finds the amount of variation from the population
func (f Float64Data) StandardDeviationPopulation() (float64, error) {
return StandardDeviationPopulation(f)
}
// StandardDeviationSample finds the amount of variation from a sample
func (f Float64Data) StandardDeviationSample() (float64, error) {
return StandardDeviationSample(f)
}
// QuartileOutliers finds the mild and extreme outliers
func (f Float64Data) QuartileOutliers() (Outliers, error) {
return QuartileOutliers(f)
}
// Percentile finds the relative standing in a slice of floats
func (f Float64Data) Percentile(p float64) (float64, error) {
return Percentile(f, p)
}
// PercentileNearestRank finds the relative standing using the Nearest Rank method
func (f Float64Data) PercentileNearestRank(p float64) (float64, error) {
return PercentileNearestRank(f, p)
}
// Correlation describes the degree of relationship between two sets of data
func (f Float64Data) Correlation(d Float64Data) (float64, error) {
return Correlation(f, d)
}
// AutoCorrelation is the correlation of a signal with a delayed copy of itself as a function of delay
func (f Float64Data) AutoCorrelation(lags int) (float64, error) {
return AutoCorrelation(f, lags)
}
// Pearson calculates the Pearson product-moment correlation coefficient between two variables.
func (f Float64Data) Pearson(d Float64Data) (float64, error) {
return Pearson(f, d)
}
// Quartile returns the three quartile points from a slice of data
func (f Float64Data) Quartile(d Float64Data) (Quartiles, error) {
return Quartile(d)
}
// InterQuartileRange finds the range between Q1 and Q3
func (f Float64Data) InterQuartileRange() (float64, error) {
return InterQuartileRange(f)
}
// Midhinge finds the average of the first and third quartiles
func (f Float64Data) Midhinge(d Float64Data) (float64, error) {
return Midhinge(d)
}
// Trimean finds the average of the median and the midhinge
func (f Float64Data) Trimean(d Float64Data) (float64, error) {
return Trimean(d)
}
// Sample returns sample from input with replacement or without
func (f Float64Data) Sample(n int, r bool) ([]float64, error) {
return Sample(f, n, r)
}
// Variance the amount of variation in the dataset
func (f Float64Data) Variance() (float64, error) {
return Variance(f)
}
// PopulationVariance finds the amount of variance within a population
func (f Float64Data) PopulationVariance() (float64, error) {
return PopulationVariance(f)
}
// SampleVariance finds the amount of variance within a sample
func (f Float64Data) SampleVariance() (float64, error) {
return SampleVariance(f)
}
// Covariance is a measure of how much two sets of data change
func (f Float64Data) Covariance(d Float64Data) (float64, error) {
return Covariance(f, d)
}
// CovariancePopulation computes covariance for entire population between two variables
func (f Float64Data) CovariancePopulation(d Float64Data) (float64, error) {
return CovariancePopulation(f, d)
}
// Sigmoid returns the input values along the sigmoid or s-shaped curve
func (f Float64Data) Sigmoid() ([]float64, error) {
return Sigmoid(f)
}
// SoftMax returns the input values in the range of 0 to 1
// with sum of all the probabilities being equal to one.
func (f Float64Data) SoftMax() ([]float64, error) {
return SoftMax(f)
}
// Entropy provides calculation of the entropy
func (f Float64Data) Entropy() (float64, error) {
return Entropy(f)
}
// Quartiles returns the three quartile points from instance of Float64Data
func (f Float64Data) Quartiles() (Quartiles, error) {
return Quartile(f)
}

81
vendor/github.com/montanaflynn/stats/describe.go generated vendored Normal file
View File

@@ -0,0 +1,81 @@
package stats
import "fmt"
// Holds information about the dataset provided to Describe
type Description struct {
Count int
Mean float64
Std float64
Max float64
Min float64
DescriptionPercentiles []descriptionPercentile
AllowedNaN bool
}
// Specifies percentiles to be computed
type descriptionPercentile struct {
Percentile float64
Value float64
}
// Describe generates descriptive statistics about a provided dataset, similar to python's pandas.describe()
func Describe(input Float64Data, allowNaN bool, percentiles *[]float64) (*Description, error) {
return DescribePercentileFunc(input, allowNaN, percentiles, Percentile)
}
// Describe generates descriptive statistics about a provided dataset, similar to python's pandas.describe()
// Takes in a function to use for percentile calculation
func DescribePercentileFunc(input Float64Data, allowNaN bool, percentiles *[]float64, percentileFunc func(Float64Data, float64) (float64, error)) (*Description, error) {
var description Description
description.AllowedNaN = allowNaN
description.Count = input.Len()
if description.Count == 0 && !allowNaN {
return &description, ErrEmptyInput
}
// Disregard error, since it cannot be thrown if Count is > 0 and allowNaN is false, else NaN is accepted
description.Std, _ = StandardDeviation(input)
description.Max, _ = Max(input)
description.Min, _ = Min(input)
description.Mean, _ = Mean(input)
if percentiles != nil {
for _, percentile := range *percentiles {
if value, err := percentileFunc(input, percentile); err == nil || allowNaN {
description.DescriptionPercentiles = append(description.DescriptionPercentiles, descriptionPercentile{Percentile: percentile, Value: value})
}
}
}
return &description, nil
}
/*
Represents the Description instance in a string format with specified number of decimals
count 3
mean 2.00
std 0.82
max 3.00
min 1.00
25.00% NaN
50.00% 1.50
75.00% 2.50
NaN OK true
*/
func (d *Description) String(decimals int) string {
var str string
str += fmt.Sprintf("count\t%d\n", d.Count)
str += fmt.Sprintf("mean\t%.*f\n", decimals, d.Mean)
str += fmt.Sprintf("std\t%.*f\n", decimals, d.Std)
str += fmt.Sprintf("max\t%.*f\n", decimals, d.Max)
str += fmt.Sprintf("min\t%.*f\n", decimals, d.Min)
for _, percentile := range d.DescriptionPercentiles {
str += fmt.Sprintf("%.2f%%\t%.*f\n", percentile.Percentile, decimals, percentile.Value)
}
str += fmt.Sprintf("NaN OK\t%t", d.AllowedNaN)
return str
}

57
vendor/github.com/montanaflynn/stats/deviation.go generated vendored Normal file
View File

@@ -0,0 +1,57 @@
package stats
import "math"
// MedianAbsoluteDeviation finds the median of the absolute deviations from the dataset median
func MedianAbsoluteDeviation(input Float64Data) (mad float64, err error) {
return MedianAbsoluteDeviationPopulation(input)
}
// MedianAbsoluteDeviationPopulation finds the median of the absolute deviations from the population median
func MedianAbsoluteDeviationPopulation(input Float64Data) (mad float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
i := copyslice(input)
m, _ := Median(i)
for key, value := range i {
i[key] = math.Abs(value - m)
}
return Median(i)
}
// StandardDeviation the amount of variation in the dataset
func StandardDeviation(input Float64Data) (sdev float64, err error) {
return StandardDeviationPopulation(input)
}
// StandardDeviationPopulation finds the amount of variation from the population
func StandardDeviationPopulation(input Float64Data) (sdev float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
// Get the population variance
vp, _ := PopulationVariance(input)
// Return the population standard deviation
return math.Sqrt(vp), nil
}
// StandardDeviationSample finds the amount of variation from a sample
func StandardDeviationSample(input Float64Data) (sdev float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
// Get the sample variance
vs, _ := SampleVariance(input)
// Return the sample standard deviation
return math.Sqrt(vs), nil
}

91
vendor/github.com/montanaflynn/stats/distances.go generated vendored Normal file
View File

@@ -0,0 +1,91 @@
package stats
import (
"math"
)
// Validate data for distance calculation
func validateData(dataPointX, dataPointY Float64Data) error {
if len(dataPointX) == 0 || len(dataPointY) == 0 {
return EmptyInputErr
}
if len(dataPointX) != len(dataPointY) {
return SizeErr
}
return nil
}
// ChebyshevDistance computes the Chebyshev distance between two data sets
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
var tempDistance float64
for i := 0; i < len(dataPointY); i++ {
tempDistance = math.Abs(dataPointX[i] - dataPointY[i])
if distance < tempDistance {
distance = tempDistance
}
}
return distance, nil
}
// EuclideanDistance computes the Euclidean distance between two data sets
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
distance = 0
for i := 0; i < len(dataPointX); i++ {
distance = distance + ((dataPointX[i] - dataPointY[i]) * (dataPointX[i] - dataPointY[i]))
}
return math.Sqrt(distance), nil
}
// ManhattanDistance computes the Manhattan distance between two data sets
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
distance = 0
for i := 0; i < len(dataPointX); i++ {
distance = distance + math.Abs(dataPointX[i]-dataPointY[i])
}
return distance, nil
}
// MinkowskiDistance computes the Minkowski distance between two data sets
//
// Arguments:
//
// dataPointX: First set of data points
// dataPointY: Second set of data points. Length of both data
// sets must be equal.
// lambda: aka p or city blocks; With lambda = 1
// returned distance is manhattan distance and
// lambda = 2; it is euclidean distance. Lambda
// reaching to infinite - distance would be chebysev
// distance.
//
// Return:
//
// Distance or error
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error) {
err = validateData(dataPointX, dataPointY)
if err != nil {
return math.NaN(), err
}
for i := 0; i < len(dataPointY); i++ {
distance = distance + math.Pow(math.Abs(dataPointX[i]-dataPointY[i]), lambda)
}
distance = math.Pow(distance, 1/lambda)
if math.IsInf(distance, 1) {
return math.NaN(), InfValue
}
return distance, nil
}

23
vendor/github.com/montanaflynn/stats/doc.go generated vendored Normal file
View File

@@ -0,0 +1,23 @@
/*
Package stats is a well tested and comprehensive
statistics library package with no dependencies.
Example Usage:
// start with some source data to use
data := []float64{1.0, 2.1, 3.2, 4.823, 4.1, 5.8}
// you could also use different types like this
// data := stats.LoadRawData([]int{1, 2, 3, 4, 5})
// data := stats.LoadRawData([]interface{}{1.1, "2", 3})
// etc...
median, _ := stats.Median(data)
fmt.Println(median) // 3.65
roundedMedian, _ := stats.Round(median, 0)
fmt.Println(roundedMedian) // 4
MIT License Copyright (c) 2014-2020 Montana Flynn (https://montanaflynn.com)
*/
package stats

31
vendor/github.com/montanaflynn/stats/entropy.go generated vendored Normal file
View File

@@ -0,0 +1,31 @@
package stats
import "math"
// Entropy provides calculation of the entropy
func Entropy(input Float64Data) (float64, error) {
input, err := normalize(input)
if err != nil {
return math.NaN(), err
}
var result float64
for i := 0; i < input.Len(); i++ {
v := input.Get(i)
if v == 0 {
continue
}
result += (v * math.Log(v))
}
return -result, nil
}
func normalize(input Float64Data) (Float64Data, error) {
sum, err := input.Sum()
if err != nil {
return Float64Data{}, err
}
for i := 0; i < input.Len(); i++ {
input[i] = input[i] / sum
}
return input, nil
}

35
vendor/github.com/montanaflynn/stats/errors.go generated vendored Normal file
View File

@@ -0,0 +1,35 @@
package stats
type statsError struct {
err string
}
func (s statsError) Error() string {
return s.err
}
func (s statsError) String() string {
return s.err
}
// These are the package-wide error values.
// All error identification should use these values.
// https://github.com/golang/go/wiki/Errors#naming
var (
// ErrEmptyInput Input must not be empty
ErrEmptyInput = statsError{"Input must not be empty."}
// ErrNaN Not a number
ErrNaN = statsError{"Not a number."}
// ErrNegative Must not contain negative values
ErrNegative = statsError{"Must not contain negative values."}
// ErrZero Must not contain zero values
ErrZero = statsError{"Must not contain zero values."}
// ErrBounds Input is outside of range
ErrBounds = statsError{"Input is outside of range."}
// ErrSize Must be the same length
ErrSize = statsError{"Must be the same length."}
// ErrInfValue Value is infinite
ErrInfValue = statsError{"Value is infinite."}
// ErrYCoord Y Value must be greater than zero
ErrYCoord = statsError{"Y Value must be greater than zero."}
)

View File

@@ -0,0 +1,42 @@
package stats
import (
"math"
)
// ProbGeom generates the probability for a geometric random variable
// with parameter p to achieve success in the interval of [a, b] trials
// See https://en.wikipedia.org/wiki/Geometric_distribution for more information
func ProbGeom(a int, b int, p float64) (prob float64, err error) {
if (a > b) || (a < 1) {
return math.NaN(), ErrBounds
}
prob = 0
q := 1 - p // probability of failure
for k := a + 1; k <= b; k++ {
prob = prob + p*math.Pow(q, float64(k-1))
}
return prob, nil
}
// ProbGeom generates the expectation or average number of trials
// for a geometric random variable with parameter p
func ExpGeom(p float64) (exp float64, err error) {
if (p > 1) || (p < 0) {
return math.NaN(), ErrNegative
}
return 1 / p, nil
}
// ProbGeom generates the variance for number for a
// geometric random variable with parameter p
func VarGeom(p float64) (exp float64, err error) {
if (p > 1) || (p < 0) {
return math.NaN(), ErrNegative
}
return (1 - p) / math.Pow(p, 2), nil
}

49
vendor/github.com/montanaflynn/stats/legacy.go generated vendored Normal file
View File

@@ -0,0 +1,49 @@
package stats
// VarP is a shortcut to PopulationVariance
func VarP(input Float64Data) (sdev float64, err error) {
return PopulationVariance(input)
}
// VarS is a shortcut to SampleVariance
func VarS(input Float64Data) (sdev float64, err error) {
return SampleVariance(input)
}
// StdDevP is a shortcut to StandardDeviationPopulation
func StdDevP(input Float64Data) (sdev float64, err error) {
return StandardDeviationPopulation(input)
}
// StdDevS is a shortcut to StandardDeviationSample
func StdDevS(input Float64Data) (sdev float64, err error) {
return StandardDeviationSample(input)
}
// LinReg is a shortcut to LinearRegression
func LinReg(s []Coordinate) (regressions []Coordinate, err error) {
return LinearRegression(s)
}
// ExpReg is a shortcut to ExponentialRegression
func ExpReg(s []Coordinate) (regressions []Coordinate, err error) {
return ExponentialRegression(s)
}
// LogReg is a shortcut to LogarithmicRegression
func LogReg(s []Coordinate) (regressions []Coordinate, err error) {
return LogarithmicRegression(s)
}
// Legacy error names that didn't start with Err
var (
EmptyInputErr = ErrEmptyInput
NaNErr = ErrNaN
NegativeErr = ErrNegative
ZeroErr = ErrZero
BoundsErr = ErrBounds
SizeErr = ErrSize
InfValue = ErrInfValue
YCoordErr = ErrYCoord
EmptyInput = ErrEmptyInput
)

199
vendor/github.com/montanaflynn/stats/load.go generated vendored Normal file
View File

@@ -0,0 +1,199 @@
package stats
import (
"bufio"
"io"
"strconv"
"strings"
"time"
)
// LoadRawData parses and converts a slice of mixed data types to floats
func LoadRawData(raw interface{}) (f Float64Data) {
var r []interface{}
var s Float64Data
switch t := raw.(type) {
case []interface{}:
r = t
case []uint:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []uint8:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []uint16:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []uint32:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []uint64:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []bool:
for _, v := range t {
if v {
s = append(s, 1.0)
} else {
s = append(s, 0.0)
}
}
return s
case []float64:
return Float64Data(t)
case []int:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []int8:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []int16:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []int32:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []int64:
for _, v := range t {
s = append(s, float64(v))
}
return s
case []string:
for _, v := range t {
r = append(r, v)
}
case []time.Duration:
for _, v := range t {
r = append(r, v)
}
case map[int]int:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]int8:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]int16:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]int32:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]int64:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]string:
for i := 0; i < len(t); i++ {
r = append(r, t[i])
}
case map[int]uint:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]uint8:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]uint16:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]uint32:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]uint64:
for i := 0; i < len(t); i++ {
s = append(s, float64(t[i]))
}
return s
case map[int]bool:
for i := 0; i < len(t); i++ {
if t[i] {
s = append(s, 1.0)
} else {
s = append(s, 0.0)
}
}
return s
case map[int]float64:
for i := 0; i < len(t); i++ {
s = append(s, t[i])
}
return s
case map[int]time.Duration:
for i := 0; i < len(t); i++ {
r = append(r, t[i])
}
case string:
for _, v := range strings.Fields(t) {
r = append(r, v)
}
case io.Reader:
scanner := bufio.NewScanner(t)
for scanner.Scan() {
l := scanner.Text()
for _, v := range strings.Fields(l) {
r = append(r, v)
}
}
}
for _, v := range r {
switch t := v.(type) {
case int:
a := float64(t)
f = append(f, a)
case uint:
f = append(f, float64(t))
case float64:
f = append(f, t)
case string:
fl, err := strconv.ParseFloat(t, 64)
if err == nil {
f = append(f, fl)
}
case bool:
if t {
f = append(f, 1.0)
} else {
f = append(f, 0.0)
}
case time.Duration:
f = append(f, float64(t))
}
}
return f
}

26
vendor/github.com/montanaflynn/stats/max.go generated vendored Normal file
View File

@@ -0,0 +1,26 @@
package stats
import (
"math"
)
// Max finds the highest number in a slice
func Max(input Float64Data) (max float64, err error) {
// Return an error if there are no numbers
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
// Get the first value as the starting point
max = input.Get(0)
// Loop and replace higher values
for i := 1; i < input.Len(); i++ {
if input.Get(i) > max {
max = input.Get(i)
}
}
return max, nil
}

60
vendor/github.com/montanaflynn/stats/mean.go generated vendored Normal file
View File

@@ -0,0 +1,60 @@
package stats
import "math"
// Mean gets the average of a slice of numbers
func Mean(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
sum, _ := input.Sum()
return sum / float64(input.Len()), nil
}
// GeometricMean gets the geometric mean for a slice of numbers
func GeometricMean(input Float64Data) (float64, error) {
l := input.Len()
if l == 0 {
return math.NaN(), EmptyInputErr
}
// Get the product of all the numbers
var p float64
for _, n := range input {
if p == 0 {
p = n
} else {
p *= n
}
}
// Calculate the geometric mean
return math.Pow(p, 1/float64(l)), nil
}
// HarmonicMean gets the harmonic mean for a slice of numbers
func HarmonicMean(input Float64Data) (float64, error) {
l := input.Len()
if l == 0 {
return math.NaN(), EmptyInputErr
}
// Get the sum of all the numbers reciprocals and return an
// error for values that cannot be included in harmonic mean
var p float64
for _, n := range input {
if n < 0 {
return math.NaN(), NegativeErr
} else if n == 0 {
return math.NaN(), ZeroErr
}
p += (1 / n)
}
return float64(l) / p, nil
}

25
vendor/github.com/montanaflynn/stats/median.go generated vendored Normal file
View File

@@ -0,0 +1,25 @@
package stats
import "math"
// Median gets the median number in a slice of numbers
func Median(input Float64Data) (median float64, err error) {
// Start by sorting a copy of the slice
c := sortedCopy(input)
// No math is needed if there are no numbers
// For even numbers we add the two middle numbers
// and divide by two using the mean function above
// For odd numbers we just use the middle number
l := len(c)
if l == 0 {
return math.NaN(), EmptyInputErr
} else if l%2 == 0 {
median, _ = Mean(c[l/2-1 : l/2+1])
} else {
median = c[l/2]
}
return median, nil
}

26
vendor/github.com/montanaflynn/stats/min.go generated vendored Normal file
View File

@@ -0,0 +1,26 @@
package stats
import "math"
// Min finds the lowest number in a set of data
func Min(input Float64Data) (min float64, err error) {
// Get the count of numbers in the slice
l := input.Len()
// Return an error if there are no numbers
if l == 0 {
return math.NaN(), EmptyInputErr
}
// Get the first value as the starting point
min = input.Get(0)
// Iterate until done checking for a lower value
for i := 1; i < l; i++ {
if input.Get(i) < min {
min = input.Get(i)
}
}
return min, nil
}

47
vendor/github.com/montanaflynn/stats/mode.go generated vendored Normal file
View File

@@ -0,0 +1,47 @@
package stats
// Mode gets the mode [most frequent value(s)] of a slice of float64s
func Mode(input Float64Data) (mode []float64, err error) {
// Return the input if there's only one number
l := input.Len()
if l == 1 {
return input, nil
} else if l == 0 {
return nil, EmptyInputErr
}
c := sortedCopyDif(input)
// Traverse sorted array,
// tracking the longest repeating sequence
mode = make([]float64, 5)
cnt, maxCnt := 1, 1
for i := 1; i < l; i++ {
switch {
case c[i] == c[i-1]:
cnt++
case cnt == maxCnt && maxCnt != 1:
mode = append(mode, c[i-1])
cnt = 1
case cnt > maxCnt:
mode = append(mode[:0], c[i-1])
maxCnt, cnt = cnt, 1
default:
cnt = 1
}
}
switch {
case cnt == maxCnt:
mode = append(mode, c[l-1])
case cnt > maxCnt:
mode = append(mode[:0], c[l-1])
maxCnt = cnt
}
// Since length must be greater than 1,
// check for slices of distinct values
if maxCnt == 1 || len(mode)*maxCnt == l && maxCnt != l {
return Float64Data{}, nil
}
return mode, nil
}

254
vendor/github.com/montanaflynn/stats/norm.go generated vendored Normal file
View File

@@ -0,0 +1,254 @@
package stats
import (
"math"
"math/rand"
"strings"
"time"
)
// NormPpfRvs generates random variates using the Point Percentile Function.
// For more information please visit: https://demonstrations.wolfram.com/TheMethodOfInverseTransforms/
func NormPpfRvs(loc float64, scale float64, size int) []float64 {
rand.Seed(time.Now().UnixNano())
var toReturn []float64
for i := 0; i < size; i++ {
toReturn = append(toReturn, NormPpf(rand.Float64(), loc, scale))
}
return toReturn
}
// NormBoxMullerRvs generates random variates using the BoxMuller transform.
// For more information please visit: http://mathworld.wolfram.com/Box-MullerTransformation.html
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 {
rand.Seed(time.Now().UnixNano())
var toReturn []float64
for i := 0; i < int(float64(size/2)+float64(size%2)); i++ {
// u1 and u2 are uniformly distributed random numbers between 0 and 1.
u1 := rand.Float64()
u2 := rand.Float64()
// x1 and x2 are normally distributed random numbers.
x1 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Cos(2*math.Pi*u2)))
toReturn = append(toReturn, x1)
if (i+1)*2 <= size {
x2 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Sin(2*math.Pi*u2)))
toReturn = append(toReturn, x2)
}
}
return toReturn
}
// NormPdf is the probability density function.
func NormPdf(x float64, loc float64, scale float64) float64 {
return (math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi))
}
// NormLogPdf is the log of the probability density function.
func NormLogPdf(x float64, loc float64, scale float64) float64 {
return math.Log((math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi)))
}
// NormCdf is the cumulative distribution function.
func NormCdf(x float64, loc float64, scale float64) float64 {
return 0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2))))
}
// NormLogCdf is the log of the cumulative distribution function.
func NormLogCdf(x float64, loc float64, scale float64) float64 {
return math.Log(0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2)))))
}
// NormSf is the survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
func NormSf(x float64, loc float64, scale float64) float64 {
return 1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2))))
}
// NormLogSf is the log of the survival function.
func NormLogSf(x float64, loc float64, scale float64) float64 {
return math.Log(1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2)))))
}
// NormPpf is the point percentile function.
// This is based on Peter John Acklam's inverse normal CDF.
// algorithm: http://home.online.no/~pjacklam/notes/invnorm/ (no longer visible).
// For more information please visit: https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/
func NormPpf(p float64, loc float64, scale float64) (x float64) {
const (
a1 = -3.969683028665376e+01
a2 = 2.209460984245205e+02
a3 = -2.759285104469687e+02
a4 = 1.383577518672690e+02
a5 = -3.066479806614716e+01
a6 = 2.506628277459239e+00
b1 = -5.447609879822406e+01
b2 = 1.615858368580409e+02
b3 = -1.556989798598866e+02
b4 = 6.680131188771972e+01
b5 = -1.328068155288572e+01
c1 = -7.784894002430293e-03
c2 = -3.223964580411365e-01
c3 = -2.400758277161838e+00
c4 = -2.549732539343734e+00
c5 = 4.374664141464968e+00
c6 = 2.938163982698783e+00
d1 = 7.784695709041462e-03
d2 = 3.224671290700398e-01
d3 = 2.445134137142996e+00
d4 = 3.754408661907416e+00
plow = 0.02425
phigh = 1 - plow
)
if p < 0 || p > 1 {
return math.NaN()
} else if p == 0 {
return -math.Inf(0)
} else if p == 1 {
return math.Inf(0)
}
if p < plow {
q := math.Sqrt(-2 * math.Log(p))
x = (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
} else if phigh < p {
q := math.Sqrt(-2 * math.Log(1-p))
x = -(((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
} else {
q := p - 0.5
r := q * q
x = (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r + a6) * q /
(((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r + 1)
}
e := 0.5*math.Erfc(-x/math.Sqrt2) - p
u := e * math.Sqrt(2*math.Pi) * math.Exp(x*x/2)
x = x - u/(1+x*u/2)
return x*scale + loc
}
// NormIsf is the inverse survival function (inverse of sf).
func NormIsf(p float64, loc float64, scale float64) (x float64) {
if -NormPpf(p, loc, scale) == 0 {
return 0
}
return -NormPpf(p, loc, scale)
}
// NormMoment approximates the non-central (raw) moment of order n.
// For more information please visit: https://math.stackexchange.com/questions/1945448/methods-for-finding-raw-moments-of-the-normal-distribution
func NormMoment(n int, loc float64, scale float64) float64 {
toReturn := 0.0
for i := 0; i < n+1; i++ {
if (n-i)%2 == 0 {
toReturn += float64(Ncr(n, i)) * (math.Pow(loc, float64(i))) * (math.Pow(scale, float64(n-i))) *
(float64(factorial(n-i)) / ((math.Pow(2.0, float64((n-i)/2))) *
float64(factorial((n-i)/2))))
}
}
return toReturn
}
// NormStats returns the mean, variance, skew, and/or kurtosis.
// Mean(m), variance(v), skew(s), and/or kurtosis(k).
// Takes string containing any of 'mvsk'.
// Returns array of m v s k in that order.
func NormStats(loc float64, scale float64, moments string) []float64 {
var toReturn []float64
if strings.ContainsAny(moments, "m") {
toReturn = append(toReturn, loc)
}
if strings.ContainsAny(moments, "v") {
toReturn = append(toReturn, math.Pow(scale, 2))
}
if strings.ContainsAny(moments, "s") {
toReturn = append(toReturn, 0.0)
}
if strings.ContainsAny(moments, "k") {
toReturn = append(toReturn, 0.0)
}
return toReturn
}
// NormEntropy is the differential entropy of the RV.
func NormEntropy(loc float64, scale float64) float64 {
return math.Log(scale * math.Sqrt(2*math.Pi*math.E))
}
// NormFit returns the maximum likelihood estimators for the Normal Distribution.
// Takes array of float64 values.
// Returns array of Mean followed by Standard Deviation.
func NormFit(data []float64) [2]float64 {
sum := 0.00
for i := 0; i < len(data); i++ {
sum += data[i]
}
mean := sum / float64(len(data))
stdNumerator := 0.00
for i := 0; i < len(data); i++ {
stdNumerator += math.Pow(data[i]-mean, 2)
}
return [2]float64{mean, math.Sqrt((stdNumerator) / (float64(len(data))))}
}
// NormMedian is the median of the distribution.
func NormMedian(loc float64, scale float64) float64 {
return loc
}
// NormMean is the mean/expected value of the distribution.
func NormMean(loc float64, scale float64) float64 {
return loc
}
// NormVar is the variance of the distribution.
func NormVar(loc float64, scale float64) float64 {
return math.Pow(scale, 2)
}
// NormStd is the standard deviation of the distribution.
func NormStd(loc float64, scale float64) float64 {
return scale
}
// NormInterval finds endpoints of the range that contains alpha percent of the distribution.
func NormInterval(alpha float64, loc float64, scale float64) [2]float64 {
q1 := (1.0 - alpha) / 2
q2 := (1.0 + alpha) / 2
a := NormPpf(q1, loc, scale)
b := NormPpf(q2, loc, scale)
return [2]float64{a, b}
}
// factorial is the naive factorial algorithm.
func factorial(x int) int {
if x == 0 {
return 1
}
return x * factorial(x-1)
}
// Ncr is an N choose R algorithm.
// Aaron Cannon's algorithm.
func Ncr(n, r int) int {
if n <= 1 || r == 0 || n == r {
return 1
}
if newR := n - r; newR < r {
r = newR
}
if r == 1 {
return n
}
ret := int(n - r + 1)
for i, j := ret+1, int(2); j <= r; i, j = i+1, j+1 {
ret = ret * i / j
}
return ret
}

44
vendor/github.com/montanaflynn/stats/outlier.go generated vendored Normal file
View File

@@ -0,0 +1,44 @@
package stats
// Outliers holds mild and extreme outliers found in data
type Outliers struct {
Mild Float64Data
Extreme Float64Data
}
// QuartileOutliers finds the mild and extreme outliers
func QuartileOutliers(input Float64Data) (Outliers, error) {
if input.Len() == 0 {
return Outliers{}, EmptyInputErr
}
// Start by sorting a copy of the slice
copy := sortedCopy(input)
// Calculate the quartiles and interquartile range
qs, _ := Quartile(copy)
iqr, _ := InterQuartileRange(copy)
// Calculate the lower and upper inner and outer fences
lif := qs.Q1 - (1.5 * iqr)
uif := qs.Q3 + (1.5 * iqr)
lof := qs.Q1 - (3 * iqr)
uof := qs.Q3 + (3 * iqr)
// Find the data points that are outside of the
// inner and upper fences and add them to mild
// and extreme outlier slices
var mild Float64Data
var extreme Float64Data
for _, v := range copy {
if v < lof || v > uof {
extreme = append(extreme, v)
} else if v < lif || v > uif {
mild = append(mild, v)
}
}
// Wrap them into our struct
return Outliers{mild, extreme}, nil
}

86
vendor/github.com/montanaflynn/stats/percentile.go generated vendored Normal file
View File

@@ -0,0 +1,86 @@
package stats
import (
"math"
)
// Percentile finds the relative standing in a slice of floats
func Percentile(input Float64Data, percent float64) (percentile float64, err error) {
length := input.Len()
if length == 0 {
return math.NaN(), EmptyInputErr
}
if length == 1 {
return input[0], nil
}
if percent <= 0 || percent > 100 {
return math.NaN(), BoundsErr
}
// Start by sorting a copy of the slice
c := sortedCopy(input)
// Multiply percent by length of input
index := (percent / 100) * float64(len(c))
// Check if the index is a whole number
if index == float64(int64(index)) {
// Convert float to int
i := int(index)
// Find the value at the index
percentile = c[i-1]
} else if index > 1 {
// Convert float to int via truncation
i := int(index)
// Find the average of the index and following values
percentile, _ = Mean(Float64Data{c[i-1], c[i]})
} else {
return math.NaN(), BoundsErr
}
return percentile, nil
}
// PercentileNearestRank finds the relative standing in a slice of floats using the Nearest Rank method
func PercentileNearestRank(input Float64Data, percent float64) (percentile float64, err error) {
// Find the length of items in the slice
il := input.Len()
// Return an error for empty slices
if il == 0 {
return math.NaN(), EmptyInputErr
}
// Return error for less than 0 or greater than 100 percentages
if percent < 0 || percent > 100 {
return math.NaN(), BoundsErr
}
// Start by sorting a copy of the slice
c := sortedCopy(input)
// Return the last item
if percent == 100.0 {
return c[il-1], nil
}
// Find ordinal ranking
or := int(math.Ceil(float64(il) * percent / 100))
// Return the item that is in the place of the ordinal rank
if or == 0 {
return c[0], nil
}
return c[or-1], nil
}

74
vendor/github.com/montanaflynn/stats/quartile.go generated vendored Normal file
View File

@@ -0,0 +1,74 @@
package stats
import "math"
// Quartiles holds the three quartile points
type Quartiles struct {
Q1 float64
Q2 float64
Q3 float64
}
// Quartile returns the three quartile points from a slice of data
func Quartile(input Float64Data) (Quartiles, error) {
il := input.Len()
if il == 0 {
return Quartiles{}, EmptyInputErr
}
// Start by sorting a copy of the slice
copy := sortedCopy(input)
// Find the cutoff places depeding on if
// the input slice length is even or odd
var c1 int
var c2 int
if il%2 == 0 {
c1 = il / 2
c2 = il / 2
} else {
c1 = (il - 1) / 2
c2 = c1 + 1
}
// Find the Medians with the cutoff points
Q1, _ := Median(copy[:c1])
Q2, _ := Median(copy)
Q3, _ := Median(copy[c2:])
return Quartiles{Q1, Q2, Q3}, nil
}
// InterQuartileRange finds the range between Q1 and Q3
func InterQuartileRange(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
qs, _ := Quartile(input)
iqr := qs.Q3 - qs.Q1
return iqr, nil
}
// Midhinge finds the average of the first and third quartiles
func Midhinge(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
qs, _ := Quartile(input)
mh := (qs.Q1 + qs.Q3) / 2
return mh, nil
}
// Trimean finds the average of the median and the midhinge
func Trimean(input Float64Data) (float64, error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
c := sortedCopy(input)
q, _ := Quartile(c)
return (q.Q1 + (q.Q2 * 2) + q.Q3) / 4, nil
}

183
vendor/github.com/montanaflynn/stats/ranksum.go generated vendored Normal file
View File

@@ -0,0 +1,183 @@
package stats
// import "math"
//
// // WilcoxonRankSum tests the null hypothesis that two sets
// // of data are drawn from the same distribution. It does
// // not handle ties between measurements in x and y.
// //
// // Parameters:
// // data1 Float64Data: First set of data points.
// // data2 Float64Data: Second set of data points.
// // Length of both data samples must be equal.
// //
// // Return:
// // statistic float64: The test statistic under the
// // large-sample approximation that the
// // rank sum statistic is normally distributed.
// // pvalue float64: The two-sided p-value of the test
// // err error: Any error from the input data parameters
// //
// // https://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
// func WilcoxonRankSum(data1, data2 Float64Data) (float64, float64, error) {
//
// l1 := data1.Len()
// l2 := data2.Len()
//
// if l1 == 0 || l2 == 0 {
// return math.NaN(), math.NaN(), EmptyInputErr
// }
//
// if l1 != l2 {
// return math.NaN(), math.NaN(), SizeErr
// }
//
// alldata := Float64Data{}
// alldata = append(alldata, data1...)
// alldata = append(alldata, data2...)
//
// // ranked :=
//
// return 0.0, 0.0, nil
// }
//
// // x, y = map(np.asarray, (x, y))
// // n1 = len(x)
// // n2 = len(y)
// // alldata = np.concatenate((x, y))
// // ranked = rankdata(alldata)
// // x = ranked[:n1]
// // s = np.sum(x, axis=0)
// // expected = n1 * (n1+n2+1) / 2.0
// // z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
// // prob = 2 * distributions.norm.sf(abs(z))
// //
// // return RanksumsResult(z, prob)
//
// // def rankdata(a, method='average'):
// // """
// // Assign ranks to data, dealing with ties appropriately.
// // Ranks begin at 1. The `method` argument controls how ranks are assigned
// // to equal values. See [1]_ for further discussion of ranking methods.
// // Parameters
// // ----------
// // a : array_like
// // The array of values to be ranked. The array is first flattened.
// // method : str, optional
// // The method used to assign ranks to tied elements.
// // The options are 'average', 'min', 'max', 'dense' and 'ordinal'.
// // 'average':
// // The average of the ranks that would have been assigned to
// // all the tied values is assigned to each value.
// // 'min':
// // The minimum of the ranks that would have been assigned to all
// // the tied values is assigned to each value. (This is also
// // referred to as "competition" ranking.)
// // 'max':
// // The maximum of the ranks that would have been assigned to all
// // the tied values is assigned to each value.
// // 'dense':
// // Like 'min', but the rank of the next highest element is assigned
// // the rank immediately after those assigned to the tied elements.
// // 'ordinal':
// // All values are given a distinct rank, corresponding to the order
// // that the values occur in `a`.
// // The default is 'average'.
// // Returns
// // -------
// // ranks : ndarray
// // An array of length equal to the size of `a`, containing rank
// // scores.
// // References
// // ----------
// // .. [1] "Ranking", https://en.wikipedia.org/wiki/Ranking
// // Examples
// // --------
// // >>> from scipy.stats import rankdata
// // >>> rankdata([0, 2, 3, 2])
// // array([ 1. , 2.5, 4. , 2.5])
// // """
// //
// // arr = np.ravel(np.asarray(a))
// // algo = 'quicksort'
// // sorter = np.argsort(arr, kind=algo)
// //
// // inv = np.empty(sorter.size, dtype=np.intp)
// // inv[sorter] = np.arange(sorter.size, dtype=np.intp)
// //
// //
// // arr = arr[sorter]
// // obs = np.r_[True, arr[1:] != arr[:-1]]
// // dense = obs.cumsum()[inv]
// //
// //
// // # cumulative counts of each unique value
// // count = np.r_[np.nonzero(obs)[0], len(obs)]
// //
// // # average method
// // return .5 * (count[dense] + count[dense - 1] + 1)
//
// type rankable interface {
// Len() int
// RankEqual(int, int) bool
// }
//
// func StandardRank(d rankable) []float64 {
// r := make([]float64, d.Len())
// var k int
// for i := range r {
// if i == 0 || !d.RankEqual(i, i-1) {
// k = i + 1
// }
// r[i] = float64(k)
// }
// return r
// }
//
// func ModifiedRank(d rankable) []float64 {
// r := make([]float64, d.Len())
// for i := range r {
// k := i + 1
// for j := i + 1; j < len(r) && d.RankEqual(i, j); j++ {
// k = j + 1
// }
// r[i] = float64(k)
// }
// return r
// }
//
// func DenseRank(d rankable) []float64 {
// r := make([]float64, d.Len())
// var k int
// for i := range r {
// if i == 0 || !d.RankEqual(i, i-1) {
// k++
// }
// r[i] = float64(k)
// }
// return r
// }
//
// func OrdinalRank(d rankable) []float64 {
// r := make([]float64, d.Len())
// for i := range r {
// r[i] = float64(i + 1)
// }
// return r
// }
//
// func FractionalRank(d rankable) []float64 {
// r := make([]float64, d.Len())
// for i := 0; i < len(r); {
// var j int
// f := float64(i + 1)
// for j = i + 1; j < len(r) && d.RankEqual(i, j); j++ {
// f += float64(j + 1)
// }
// f /= float64(j - i)
// for ; i < j; i++ {
// r[i] = f
// }
// }
// return r
// }

113
vendor/github.com/montanaflynn/stats/regression.go generated vendored Normal file
View File

@@ -0,0 +1,113 @@
package stats
import "math"
// Series is a container for a series of data
type Series []Coordinate
// Coordinate holds the data in a series
type Coordinate struct {
X, Y float64
}
// LinearRegression finds the least squares linear regression on data series
func LinearRegression(s Series) (regressions Series, err error) {
if len(s) == 0 {
return nil, EmptyInputErr
}
// Placeholder for the math to be done
var sum [5]float64
// Loop over data keeping index in place
i := 0
for ; i < len(s); i++ {
sum[0] += s[i].X
sum[1] += s[i].Y
sum[2] += s[i].X * s[i].X
sum[3] += s[i].X * s[i].Y
sum[4] += s[i].Y * s[i].Y
}
// Find gradient and intercept
f := float64(i)
gradient := (f*sum[3] - sum[0]*sum[1]) / (f*sum[2] - sum[0]*sum[0])
intercept := (sum[1] / f) - (gradient * sum[0] / f)
// Create the new regression series
for j := 0; j < len(s); j++ {
regressions = append(regressions, Coordinate{
X: s[j].X,
Y: s[j].X*gradient + intercept,
})
}
return regressions, nil
}
// ExponentialRegression returns an exponential regression on data series
func ExponentialRegression(s Series) (regressions Series, err error) {
if len(s) == 0 {
return nil, EmptyInputErr
}
var sum [6]float64
for i := 0; i < len(s); i++ {
if s[i].Y < 0 {
return nil, YCoordErr
}
sum[0] += s[i].X
sum[1] += s[i].Y
sum[2] += s[i].X * s[i].X * s[i].Y
sum[3] += s[i].Y * math.Log(s[i].Y)
sum[4] += s[i].X * s[i].Y * math.Log(s[i].Y)
sum[5] += s[i].X * s[i].Y
}
denominator := (sum[1]*sum[2] - sum[5]*sum[5])
a := math.Pow(math.E, (sum[2]*sum[3]-sum[5]*sum[4])/denominator)
b := (sum[1]*sum[4] - sum[5]*sum[3]) / denominator
for j := 0; j < len(s); j++ {
regressions = append(regressions, Coordinate{
X: s[j].X,
Y: a * math.Exp(b*s[j].X),
})
}
return regressions, nil
}
// LogarithmicRegression returns an logarithmic regression on data series
func LogarithmicRegression(s Series) (regressions Series, err error) {
if len(s) == 0 {
return nil, EmptyInputErr
}
var sum [4]float64
i := 0
for ; i < len(s); i++ {
sum[0] += math.Log(s[i].X)
sum[1] += s[i].Y * math.Log(s[i].X)
sum[2] += s[i].Y
sum[3] += math.Pow(math.Log(s[i].X), 2)
}
f := float64(i)
a := (f*sum[1] - sum[2]*sum[0]) / (f*sum[3] - sum[0]*sum[0])
b := (sum[2] - a*sum[0]) / f
for j := 0; j < len(s); j++ {
regressions = append(regressions, Coordinate{
X: s[j].X,
Y: b + a*math.Log(s[j].X),
})
}
return regressions, nil
}

38
vendor/github.com/montanaflynn/stats/round.go generated vendored Normal file
View File

@@ -0,0 +1,38 @@
package stats
import "math"
// Round a float to a specific decimal place or precision
func Round(input float64, places int) (rounded float64, err error) {
// If the float is not a number
if math.IsNaN(input) {
return math.NaN(), NaNErr
}
// Find out the actual sign and correct the input for later
sign := 1.0
if input < 0 {
sign = -1
input *= -1
}
// Use the places arg to get the amount of precision wanted
precision := math.Pow(10, float64(places))
// Find the decimal place we are looking to round
digit := input * precision
// Get the actual decimal number as a fraction to be compared
_, decimal := math.Modf(digit)
// If the decimal is less than .5 we round down otherwise up
if decimal >= 0.5 {
rounded = math.Ceil(digit)
} else {
rounded = math.Floor(digit)
}
// Finally we do the math to actually create a rounded number
return rounded / precision * sign, nil
}

76
vendor/github.com/montanaflynn/stats/sample.go generated vendored Normal file
View File

@@ -0,0 +1,76 @@
package stats
import (
"math/rand"
"sort"
)
// Sample returns sample from input with replacement or without
func Sample(input Float64Data, takenum int, replacement bool) ([]float64, error) {
if input.Len() == 0 {
return nil, EmptyInputErr
}
length := input.Len()
if replacement {
result := Float64Data{}
rand.Seed(unixnano())
// In every step, randomly take the num for
for i := 0; i < takenum; i++ {
idx := rand.Intn(length)
result = append(result, input[idx])
}
return result, nil
} else if !replacement && takenum <= length {
rand.Seed(unixnano())
// Get permutation of number of indexies
perm := rand.Perm(length)
result := Float64Data{}
// Get element of input by permutated index
for _, idx := range perm[0:takenum] {
result = append(result, input[idx])
}
return result, nil
}
return nil, BoundsErr
}
// StableSample like stable sort, it returns samples from input while keeps the order of original data.
func StableSample(input Float64Data, takenum int) ([]float64, error) {
if input.Len() == 0 {
return nil, EmptyInputErr
}
length := input.Len()
if takenum <= length {
rand.Seed(unixnano())
perm := rand.Perm(length)
perm = perm[0:takenum]
// Sort perm before applying
sort.Ints(perm)
result := Float64Data{}
for _, idx := range perm {
result = append(result, input[idx])
}
return result, nil
}
return nil, BoundsErr
}

18
vendor/github.com/montanaflynn/stats/sigmoid.go generated vendored Normal file
View File

@@ -0,0 +1,18 @@
package stats
import "math"
// Sigmoid returns the input values in the range of -1 to 1
// along the sigmoid or s-shaped curve, commonly used in
// machine learning while training neural networks as an
// activation function.
func Sigmoid(input Float64Data) ([]float64, error) {
if input.Len() == 0 {
return Float64Data{}, EmptyInput
}
s := make([]float64, len(input))
for i, v := range input {
s[i] = 1 / (1 + math.Exp(-v))
}
return s, nil
}

25
vendor/github.com/montanaflynn/stats/softmax.go generated vendored Normal file
View File

@@ -0,0 +1,25 @@
package stats
import "math"
// SoftMax returns the input values in the range of 0 to 1
// with sum of all the probabilities being equal to one. It
// is commonly used in machine learning neural networks.
func SoftMax(input Float64Data) ([]float64, error) {
if input.Len() == 0 {
return Float64Data{}, EmptyInput
}
s := 0.0
c, _ := Max(input)
for _, e := range input {
s += math.Exp(e - c)
}
sm := make([]float64, len(input))
for i, v := range input {
sm[i] = math.Exp(v-c) / s
}
return sm, nil
}

18
vendor/github.com/montanaflynn/stats/sum.go generated vendored Normal file
View File

@@ -0,0 +1,18 @@
package stats
import "math"
// Sum adds all the numbers of a slice together
func Sum(input Float64Data) (sum float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
// Add em up
for _, n := range input {
sum += n
}
return sum, nil
}

43
vendor/github.com/montanaflynn/stats/util.go generated vendored Normal file
View File

@@ -0,0 +1,43 @@
package stats
import (
"sort"
"time"
)
// float64ToInt rounds a float64 to an int
func float64ToInt(input float64) (output int) {
r, _ := Round(input, 0)
return int(r)
}
// unixnano returns nanoseconds from UTC epoch
func unixnano() int64 {
return time.Now().UTC().UnixNano()
}
// copyslice copies a slice of float64s
func copyslice(input Float64Data) Float64Data {
s := make(Float64Data, input.Len())
copy(s, input)
return s
}
// sortedCopy returns a sorted copy of float64s
func sortedCopy(input Float64Data) (copy Float64Data) {
copy = copyslice(input)
sort.Float64s(copy)
return
}
// sortedCopyDif returns a sorted copy of float64s
// only if the original data isn't sorted.
// Only use this if returned slice won't be manipulated!
func sortedCopyDif(input Float64Data) (copy Float64Data) {
if sort.Float64sAreSorted(input) {
return input
}
copy = copyslice(input)
sort.Float64s(copy)
return
}

105
vendor/github.com/montanaflynn/stats/variance.go generated vendored Normal file
View File

@@ -0,0 +1,105 @@
package stats
import "math"
// _variance finds the variance for both population and sample data
func _variance(input Float64Data, sample int) (variance float64, err error) {
if input.Len() == 0 {
return math.NaN(), EmptyInputErr
}
// Sum the square of the mean subtracted from each number
m, _ := Mean(input)
for _, n := range input {
variance += (n - m) * (n - m)
}
// When getting the mean of the squared differences
// "sample" will allow us to know if it's a sample
// or population and wether to subtract by one or not
return variance / float64((input.Len() - (1 * sample))), nil
}
// Variance the amount of variation in the dataset
func Variance(input Float64Data) (sdev float64, err error) {
return PopulationVariance(input)
}
// PopulationVariance finds the amount of variance within a population
func PopulationVariance(input Float64Data) (pvar float64, err error) {
v, err := _variance(input, 0)
if err != nil {
return math.NaN(), err
}
return v, nil
}
// SampleVariance finds the amount of variance within a sample
func SampleVariance(input Float64Data) (svar float64, err error) {
v, err := _variance(input, 1)
if err != nil {
return math.NaN(), err
}
return v, nil
}
// Covariance is a measure of how much two sets of data change
func Covariance(data1, data2 Float64Data) (float64, error) {
l1 := data1.Len()
l2 := data2.Len()
if l1 == 0 || l2 == 0 {
return math.NaN(), EmptyInputErr
}
if l1 != l2 {
return math.NaN(), SizeErr
}
m1, _ := Mean(data1)
m2, _ := Mean(data2)
// Calculate sum of squares
var ss float64
for i := 0; i < l1; i++ {
delta1 := (data1.Get(i) - m1)
delta2 := (data2.Get(i) - m2)
ss += (delta1*delta2 - ss) / float64(i+1)
}
return ss * float64(l1) / float64(l1-1), nil
}
// CovariancePopulation computes covariance for entire population between two variables.
func CovariancePopulation(data1, data2 Float64Data) (float64, error) {
l1 := data1.Len()
l2 := data2.Len()
if l1 == 0 || l2 == 0 {
return math.NaN(), EmptyInputErr
}
if l1 != l2 {
return math.NaN(), SizeErr
}
m1, _ := Mean(data1)
m2, _ := Mean(data2)
var s float64
for i := 0; i < l1; i++ {
delta1 := (data1.Get(i) - m1)
delta2 := (data2.Get(i) - m2)
s += delta1 * delta2
}
return s / float64(l1), nil
}

3
vendor/modules.txt vendored
View File

@@ -1045,6 +1045,9 @@ github.com/moby/sys/userns
## explicit; go 1.18
github.com/moby/term
github.com/moby/term/windows
# github.com/montanaflynn/stats v0.7.1
## explicit; go 1.13
github.com/montanaflynn/stats
# github.com/morikuni/aec v1.0.0
## explicit
github.com/morikuni/aec